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We present a technique that identifies truly interacting subsystems of a complex system from multichannel
data if the recordings are an unknown linear and instantaneous mixture of the true sources. The method is valid
for arbitrary noise structure. For this, a blind source separation technique is proposed that diagonalizes
antisymmetrized cross-correlation or cross-spectral matrices. The resulting decomposition finds truly interact-
ing subsystems blindly and suppresses any spurious interaction stemming from the mixture. The usefulness of
this interacting source analysis is demonstrated in simulations and for real electroencephalography data.
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I. INTRODUCTION

An important part of the current research in physics, bi-
ology, and medical science addresses the analysis and mod-
eling of complex dynamical systems. Often, these systems
consist of interacting subsystems; thus, understanding the in-
teraction processes is of fundamental importance. However,
when measuring data from complex systems, often only su-
perimposed signals with a high noise contamination can be
assessed. Superposition effects are dominant where only sur-
face measurements are accessible, while the interesting dy-
namical processes are hidden “underneath,” e.g., in seismol-
ogy, the study of active stars, or neuroscience �1�.

The prime example of such a complex system with inter-
acting components is the human brain. A huge number of
neurons form cortical areas that interact dynamically to rep-
resent and process information. Although the contribution of
this paper is of general interest, our further discussion will
focus on the important example of cortical interactions.
When measuring brain activity, e.g., with electroencephalog-
raphy �EEG� or magnetoencephalography �MEG�, the sensor
information only indirectly reflects the dynamics of the
single subsystems involved: volume conduction effects sys-
tematically only allow one to measure superpositions with
some additional noise.

To study cortical interactions, which manifest in phase
synchrony or coherent states in brain activity �2–4�, it is of
fundamental importance to distinguish interaction-related ef-
fects from those that are only induced by superposition and,

by this, to avoid measuring spurious interaction. Further-
more, it is typically unclear, what the interesting subsystems
are or, in other words, how the whole system should be de-
composed into such subsystems.

Recently, there have been several approaches that address
parts of this problem from different perspectives, e.g., by
proposing a surrogate test �5�, analyzing the imaginary part
of the coherency function �6�, or calculating the phase coher-
ency after a prior source separation step �7�.

In this paper, we aim to establish a more general concept
for extracting truly interacting components. In contrast to
existing methods, this concept is insensitive to mixing ef-
fects, can handle both narrow- and wideband interactions, is
genuinely multivariate and suited even for situations when
there are far more active sources than sensors. Particularly, it
can be applied to systems with arbitrary noise structure. Al-
though with a different objective, the proposed concept has a
close structural relationship with methods from the field of
independent component analysis �ICA� �1�; thus, we will
give a brief introduction to ICA based on second-order sta-
tistics before we derive some fundamental properties of our
method. Finally, we will apply it to simulated data and real
EEG.

II. THEORY

The fundamental assumption of ICA is that a data matrix
X, without loss of generality assumed to be zero mean, origi-
nates from a superposition of independent sources S such
that

X = AS �1�

where A is called the mixing matrix which is assumed to be
invertible. The task is to find A and, hence, S �apart from
trivial ordering and scale transformations of the columns of
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A and the rows of S� by merely exploiting statistical inde-
pendence of the sources. Since independence implies that the
sources are uncorrelated we may choose W, the estimated
inverse mixing matrix, such that the covariance matrix of

Ŝ � WX �2�

is equal to the identity matrix. This, however, does not
uniquely determine W because for any such W also UW,
where U is an arbitrary orthogonal matrix, leads to a unit

covariance matrix of Ŝ. Uniqueness can be restored if we
require that W not only diagonalizes the covariance matrix
but also cross-correlation matrices for one �8� or more �9�
delays �, i.e., we require that

WCX���W† = diag �3�

with

CX��� � �x�t�x†�t + ��� �4�

where x�t� is the tth column of X and the angular brackets
mean expectation value, which is estimated by the average
over t. Although at this stage all expressions are real valued,
we introduce a complex formulation for later use.

Note, that since under the ICA assumption the cross-
correlation matrices Cij

S ���= �si�t�sj�t+��� of the source sig-
nals are diagonal and hence the cross-correlation matrices
of the mixtures, CX���=ACS���A†, are symmetric. Conse-
quently, the antisymmetric part of CX��� can only arise due
to meaningless fluctuations and can be ignored. In fact, the
TDSEP algorithm �9� uses symmetrized versions of CX���.

Now, the key and main point of our method is that we will
turn the above argument upside down. Since noninteracting
sources do not contribute �systematically� to the antisymme-
trized correlation matrices

D��� � CX��� − CX†��� , �5�

any �significant� nonvanishing elements in D��� must arise
from interacting sources, and hence, the analysis of D��� is
ideally suited to study interactions.

It is now our goal to identify one or many interacting
subsystems from a suitable spatial transformation, which cor-
responds to a demixing of the subsystems rather than indi-
vidual sources. We will use the technique of simultaneous
diagonalization to achieve this goal. We first note that a di-
agonalization of D��� using a real-valued W is impossible
since with D��� also WD���W† is antisymmetric and always
has vanishing diagonal elements. Hence, D��� can only be
diagonalized with a complex-valued W with subsequent in-
terpretation of it in terms of the field patterns of the interact-
ing sources.

We will here discuss the case where all interacting sub-
systems consist of pairs of �neuronal� sources. Properties of
systems with more than two interacting sources will be dis-
cussed below. Furthermore, for simplicity we assume an
even number of channels. Also, it is understood that for finite
data sets the following is only approximately true. Then, a
real-valued spatial transformation W1 exists such that the
set of D��� becomes decomposed into K=N /2 blocks of size
2�2

W1D���W1
† =��1���	 0 1

− 1 0

 0 0

0 � 0

0 0 �K���	 0 1

− 1 0

� ,

�6�

which can be diagonalized, e.g., with

W2 =
1

2
idK�K � 	1 − i

1 i

 �7�

such that W2W1D���W1
†W2

†=diag.
From a simultaneous diagonalization of D���, we obtain

W=W2W1. We are interested in the columns of W1
−1, which

correspond to the spatial patterns of the interacting sources.
From W−1=W1

−1W2
−1 and

W2
−1 = idK�K � 	1 1

i − i

 , �8�

we observe that the desired spatial patterns are contained in
the real and imaginary parts of the columns of W−1. Further-
more, the columns come in pairs �if w is a column then so is
w*� as well as the corresponding diagonals, which read
±i�k��� for the kth pair.

Since diagonalization is invariant with respect to phase
transformations, that are independent of channel index and
frequency, the real and imaginary parts of a column w only
span the same two-dimensional �2D� subspace as the true
field patterns of the sources. Indeed, if a and b are these field
patterns, then our observables are sums of matrices propor-
tional to ab†−ba†, which is invariant under mixtures within
the subspace spanned by a and b.

Instead of diagonalizing the antisymmetrized cross-
correlation matrices, it is also possible to diagonalize their
respective Fourier-transforms, which are identical to the
imaginary parts of the cross-spectra. This variant of the
method has the advantage that we can account for largely
different signal amplitudes as a function of frequency by an
appropriate normalization of the cross-spectra. Specifically,
we will diagonalize

D�f� �
Im�C�f��

�C�f��
�9�

with

C�f� � �x̂�f�x̂†�f�� , �10�

where x̂�f� is the Fourier-transform of the data and � · � is the
Frobenius norm. With this normalization, we effectively
weight the cross-spectra with respect to a rough estimate of
the noise power.

The chosen normalization contains the risk that interest-
ing phenomena are de-emphasized. This would be clearly the
case if, e.g., large spectral power always corresponds to in-
teracting systems. On the other hand, higher frequencies con-
tain much less noise than lower ones. An interacting rhyth-
mic system at a high frequency, which is as much smaller in
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amplitude as the noise, should be detectable as well as the
�hypothetical� low-frequency counterpart. This can only be
achieved by a weighting using an estimate of the noise level.
Furthermore, it is not clear in advance whether a specific
rhythm arises from an interacting system or whether a spe-
cific interacting system is rhythmic at all. Hence, the normal-
ization provides an unprejudiced view across all frequencies.
Specifically, the fact that we observe spectral peaks in the
diagonals for the real data example �see Sec. III� although we
normalized with respect to power indicates that the observed
phenomenon is not an artifact. We want to emphasize, how-
ever, that the optimal choice of weights depends very much
on the specific case and is beyond the scope of this paper.

The general procedure can now be outlined as follows: �a�
from the data construct antisymmetrized and normalized
cross-spectral matrices as defined in Eq. �9� for a reasonable
set of frequencies f , �b� find a complex matrix W such that
WD�f�W† is approximately diagonal for all f , and �c� inter-
pret the columns of the demixing matrix and the correspond-

ing diagonal elements as spatial and spectral properties of the
interacting systems.

Although �approximate� simultaneous diagonalization of
D�f� using complex demixing matrices is always possible
with pairwise interactions, we can expect only block-
diagonal structure if a larger number of sources are interact-
ing within one or more subsystems. In general, the imaginary
cross-spectral matrices are diagonalizable �apart from ran-
dom fluctuations� if for each interacting system the sources
come in pairs. If this is not fulfilled, our method yields, by
construction, the dominant part of the interactions, but off-
diagonals contain additional information. We also assumed
that the effective number of interacting sources is smaller
than the number of channels. If this is violated, we still ob-
serve true interactions, but the decomposition into indepen-
dent subsystems is incomplete.

Matrices were approximately simultaneously diagonalized
with the DOMUNG algorithm �10�, which was generalized to
the complex domain. Here, an initial choice for the demixing

FIG. 1. �Color online� Each row contains results for two different simulations shown as full and dashed lines, respectively. Top: coupled
Rössler system for the noisy vs noise-free case; middle: coupled vs uncoupled Rössler system with noise added; bottom: same as middle row
using now normalized cross-spectra. The panels in the left column show power averaged over four channels. The panels in the middle �right�
column show the corresponding diagonals of the first �second� ISA component after complex diagonalization for each data set.
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matrix W is successively optimized using a natural gradient
approach combined with line search according to the require-
ment that the off-diagonals are minimal under the constraint
det�W�=1. Special care has to be taken in the choice of the
initial guess. Because of the complex-conjugation symmetry
of our problem �i.e., W* diagonalizes as well as W� the initial
guess may not be set to a real-valued matrix because then the
component of the gradient in the imaginary direction will be
zero and W will converge to a real-valued saddle point.

III. RESULTS

A. Simulations

We first applied our method to simulated data generated
from a coupled Rössler system with the same parameters as
in �7�

ṡ1,2 = − �1,2u1,2 − v1,2 + c�s2,1 − s1,2�

u̇1,2 = �1,2s1,2 + 0.15u1,2

v̇1,2 = 0.2 + v1,2�s1,2 − 10� �11�

with �1=1.015, �2= .985, and c=0 for the uncoupled case
and c=0.04 for the coupled case. If we define the time unit to
be 10 ms, then this system has a spectral peak at 16 Hz. We
simulated a 10 min recording with a sampling rate of
100 Hz. We considered s1 and s2 as two sources that were
randomly mapped into a four-dimensional channel space. To
these signals of interest we subsequently added �a� spatially

and temporally white noise and �b� the signals of four inde-
pendent sources containing 1/ f-noise, which were mapped
into channel-space by a random mixing matrix with positive
elements. The latter was chosen to guarantee additional cor-
related noise rather than almost spatially white noise due to
compensation of correlated and anticorrelated parts. Cross-
spectra were calculated on Hanning-windowed overlapping
segments of 1 s duration. Each segment was linearly de-
trended. Diagonalization of the imaginary parts of the cross-
spectra was performed both with and without normalization
�see Eq. �9��. The relative contributions of signal and noise
parts were defined through the average power across all fre-
quencies and channels. We chose this average for the corre-
lated noise to be twice as big as the average power for the
channel noise and the total noise power to be 50 times as big
as the average signal power.

The power, without normalization and averaged over all
channels, is shown in the upper left panel of Fig. 1 for the
coupled system for the noise-free and noisy cases. Diagonal-
ization in four channels leads to two systems for each data
set. In the upper middle and upper right panel we show the
corresponding diagonals, always divided by i, of the first and
second component, respectively. We observe that both for the
noisy and noise-free cases only one of the diagonals displays
a notable peak, which indicates true interaction, at 16 Hz,
showing that the spatial decomposition was essentially error
free also for the case where the noise is much larger than the
signal of interest.

In the middle row, we compare coupled to uncoupled sys-
tems with noise added in both cases. Although the power is

FIG. 2. �Color online� Power
as a function of electrode location
for two frequencies, and as func-
tion of frequency for two selected
channels as indicated.

NOLTE et al. PHYSICAL REVIEW E 73, 051913 �2006�

051913-4



similar, the diagonals indicate a significant interaction only
for the coupled case. In the lower panels we show the results
for normalized cross-spectra as defined in Eq. �9� for the
coupled and uncoupled Rössler system with noise added. We
note that for this simulation normalization leads to somewhat
pathological results in the noise-free case. The average
power is now lower for low frequencies because channels are
then more correlated. As in the non-normalized case, the di-
agonals indicate interaction only for the coupled case.

To evaluate the accuracy of the estimated spatial patterns
we constructed the antisymmetric outer product of the real
and imaginary parts of the respective ISA-component say a
and b, by

C =
ab† − ba†

�ab† − ba†�
�12�

where �·� denotes Frobenius norm. The distance d in percent
between a true pattern Ctrue, constructed as above with the
true spatial patterns of the interacting sources, is now defined
as

d = min
±

��Ctrue ± C��100% �13�

The minimum with respect to the sign and the normalization
is necessary because the spatial pattern �ab†−ba†� can only
be reconstructed up to a constant factor that can be absorbed
into the respective diagonal. This is analogous to “standard”
ICA and, indeed, also to the singular value decomposition,
which requires normalization and sign conventions to be
unique.

For the noisy and coupled systems, the typical relative
error in the spatial structure is around 5%. Simulations with
a larger number of channels �and corresponding number of
noise sources� showed even better results if we choose the
same total power ratios.

B. Real EEG data

After this proof of concept, we applied our method to real
data gathered in 118 EEG channels during imagined left or
right hand or foot movement from �11�. For each of the ran-
domly mixed conditions, 70 imaginations, each lasting for

3.5 s, were performed. Cross-spectra were calculated sepa-
rately for each condition by linear detrending and Hanning-
windowing the 3.5 s windows and averaging over the respec-
tive 70 trials. To improve the signal-to-noise ratio, we
additionally averaged the cross-spectra across neighboring
frequencies with a Hanning window of width 11, leading to
an effective frequency resolution of 
1 Hz. The imaginary
parts of the normalized cross-spectra were then diagonalized
simultaneously for frequencies from 0 to 45 Hz.

In Fig. 2, we show EEG power for imagined foot move-
ment as a function of frequency in two selected channels and
as function of location for two selected frequencies. We ob-
serve peaks at 10 and 12 Hz but only very small ones at 20
or 24 Hz.

We found 4 components containing clear spectral peaks in
the diagonals. Two of them are shown in the left and right
panels of Fig. 3, respectively. We recall that the spatial pat-

tern of each component corresponds to the two-dimensional
subspace spanned by the real and imaginary parts of the re-
spective column of the complex demixing matrix. To visual-
ize the respective subspace, we chose a basis �top-left and
middle-left panel for the first component� guided by the idea
that each pattern suggests an explanation as simple as pos-
sible, preferably in terms of source dipoles �here: radial for
top-left and tangential for middle-left panel�. The corre-
sponding diagonals are shown in the lower-left panel. This
component with a peak at 10 Hz and higher harmonic at
20 Hz clearly corresponds to occipital alpha activity. The
second component is shown in the right panels. The spectral
content with a peak at 12 Hz and harmonic at 24 Hz clearly
represents central mu rhythm. The spatial patterns indicate
an interaction between right motor area and deeper brain
structures, which has been modeled in �12�. However, the
detailed physiological analysis of this phenomenon is beyond
the scope of this paper. We finally note that the other two
components with clear peaks in the spectrum, which were
not shown, roughly correspond to left-right mirror images of
the shown components with similar spectral content.

To estimate whether a given ISA component truly corre-
sponds to an interacting as opposed to a random fluctuations,
we need to test whether a diagonal element at a specific
frequency is significantly different from zero. It is a potential
risk that the ISA decomposition collects those channels that
merely appear to be interacting. Probably the safest way to
avoid such a bias in the significance analysis is to divide the
data set into two parts and to construct the spatial patterns

FIG. 3. �Color online� Left: Two basis fields �top and middle�
and diagonal spectrum of component corresponding to occipital �.
Right: same for central mu rhythm.
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from the first part and test the result for significance on the
second part. This was done for the real EEG data set with
results for the two mu components shown in Fig. 4. The
spatial patterns again show activity over central motor areas
and the spectra show clear and highly significant peaks
around 12 and 14 Hz.

IV. CONCLUSION

In conclusion, when analyzing interaction between
sources from macroscopic measurements that are linear mix-
tures, it is important to distinguish meaningful patterns of
interaction from spurious ones. In particular, for EEG/MEG
measurements, volume conduction effects make large parts
of the human brain seemingly interact although in reality
such contributions are purely artifactual. Existing blind
source separation �BSS� methods that have been used with
success for artifact removal and for estimation of brain
sources will by construction fail when attempting to separate
interacting i.e. non-independent brain sources. In this work
we have proposed a BSS algorithm that uses antisymme-
trized cross-correlation or cross-spectral matrices and subse-
quent diagonalization and can thus reliably extract meaning-
ful interaction while ignoring all spurious effects. We want to
emphasize that our method is blind to interactions that do not
contain time delays and/or are completely symmetric. How-
ever, such interactions are indistinguishable from artifacts of
volume conduction, and the partial blindness of our method
is the unavoidable price to detect true interactions.

Experiments using our interacting source analysis �ISA�
reveal interesting relationships that are found blindly. These
findings exemplify that ISA is a powerful new technique
when analyzing interactions in macroscopic brain measure-
ments. Future studies will therefore apply ISA to other neu-
rophysiological paradigms in order to gain insight into the
coherence and synchronicity patterns of cortical dynamics.
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